A check valve, non-return valve, reflux valve, retention valve, foot valve, or one-way valve is a valve that normally allows fluid (liquid or gas) to flow through it in only one direction.
Check valves are two-port valves, meaning they have two openings in the body, one for fluid to enter and the other for fluid to leave. There are various types of check valves used in a wide variety of applications. Check valves are often part of common household items. Although they are available in a wide range of sizes and costs, check valves generally are very small, simple, and inexpensive. Check valves work automatically and most are not controlled by a person or any external control; accordingly, most do not have any valve handle or stem. The bodies (external shells) of most check valves are made of plastic or metal.
An important concept in check valves is the cracking pressure which is the minimum differential upstream pressure between inlet and outlet at which the valve will operate. Typically the check valve is designed for and can therefore be specified for a specific cracking pressure
Types of check valves
A ball check valve in the open position to allow forward flow and closed position to block reverse flow
A ball check valve is a check valve in which the closing member, the movable part to block the flow, is a ball. In some ball check valves, the ball is spring-loaded to help keep it shut. For those designs without a spring, reverse flow is required to move the ball toward the seat and create a seal. The interior surface of the main seats of ball check valves are more or less conically-tapered to guide the ball into the seat and form a positive seal when stopping reverse flow.
Ball check valves are often very small, simple, and cheap. They are commonly used in liquid or gel minipump dispenser spigots, spray devices, some rubber bulbs for pumping air, etc., manual air pumps and some other pumps, and refillable dispensing syringes. Although the balls are most often made of metal, they can be made of other materials; in some specialized cases out of highly durable or inert materials, such as sapphire. High pressure pumps and similar applications commonly use small inlet and outlet ball check valves with balls of (artificial) ruby and seats made of sapphire or both ball and seat of ruby,for both hardness and chemical resistance. After prolonged use, such check valves can eventually wear out or the seat can develop a crack, requiring replacement. Therefore, such valves are made to be replaceable, sometimes placed in a small plastic body tightly-fitted inside a metal fitting which can withstand high pressure and which is screwed into the pump head.
There are similar check valves where the disc is not a ball, but some other shape, such as a poppet energized by a spring. Ball check valves should not be confused with ball valves, which is a different type of valve in which a ball acts as a controllable rotor to stop or direct flow.
A diaphragm check valve uses a flexing rubber diaphragm positioned to create a normally-closed valve. Pressure on the upstream side must be greater than the pressure on the downstream side by a certain amount, known as the pressure differential, for the check valve to open allowing flow. Once positive pressure stops, the diaphragm automatically flexes back to its original closed position.This type is used in respirators (face masks) with an exhalation valve.
Swing check valve opening and closing
A swing check valve or tilting disc check valve is a check valve in which the disc, the movable part to block the flow, swings on a hinge or trunnion, either onto the seat to block reverse flow or off the seat to allow forward flow. The seat opening cross-section may be perpendicular to the centerline between the two ports or at an angle. Although swing check valves can come in various sizes, large check valves are often swing check valves. A common issue caused by swing check valves is known as water hammer. This can occur when the swing check closes and the flow abruptly stops, causing a surge of pressure resulting in high velocity shock waves that act against the piping and valves, placing large stress on the metals and vibrations in the system. Undetected, water hammer can rupture pumps, valves, and pipes within the system.
A stop-check valve is a check valve with override control to stop flow regardless of flow direction or pressure. In addition to closing in response to backflow or insufficient forward pressure (normal check-valve behavior), it can also be deliberately shut by an external mechanism, thereby preventing any flow regardless of forward pressure.
A lift-check valve is a check valve in which the disc, sometimes called a lift, can be lifted up off its seat by higher pressure of inlet or upstream fluid to allow flow to the outlet or downstream side. A guide keeps motion of the disc on a vertical line, so the valve can later reseat properly. When the pressure is no longer higher, gravity or higher downstream pressure will cause the disc to lower onto its seat, shutting the valve to stop reverse flow.
An in-line check valve is a check valve similar to the lift check valve. However, this valve generally has a spring that will 'lift' when there is pressure on the upstream side of the valve. The pressure needed on the upstream side of the valve to overcome the spring tension is called the 'cracking pressure'. When the pressure going through the valve goes below the cracking pressure, the spring will close the valve to prevent back-flow in the process.
A pneumatic non-return valve.
A reed valve is a check valve formed by a flexible flat sheet that seals an orifice plate. The cracking pressure is very low, the moving part has low mass allowing rapid operation, the flow resistance is moderate, and the seal improves with back pressure. These are commonly found in two stroke internal combustion engines as the air intake valve for the crankcase volume and in air compressors as both intake and exhaust valves for the cylinder(s). Although reed valves are typically used for gasses rather than liquids, the Autotrol brand of water treatment control valves are designed as a set of reed valves taking advantage of the sealing characteristic, selectively forcing open some of the reeds to establish a flow path.
A flow check is a check valve used in hydronic heating and cooling systems to prevent unwanted passive gravity flow. A flow check is a simple flow lifted gravity closed heavy metal stopper designed for low flow resistance, many decades of continuous service, and to self-clean the fine particulates commonly found in hydroninc systems from the sealing surfaces. To accomplish self cleaning, the stopper is typically not conical. A circular recess in a weight that fits over a matching narrow ridge at the rim of an orifice is a common design. The application inherently tolerates a modest reverse leakage rate, a perfect seal is not required. A flow check has an operating screw to allow the valve to be held open, the opposite of the control on a stop-check valve, as an aide for filling the system and for purging air from the system.
Multiple check valves can be connected in series. For example, a double check valve is often used as a backflow prevention device to keep potentially contaminated water from siphoning back into municipal water supply lines. There are also double ball check valves in which there are two ball/seat combinations sequentially in the same body to ensure positive leak-tight shutoff when blocking reverse flow; and piston check valves, wafer check valves, and ball-and-cone check valves.